

Mycoassay of Fluorescent Fractions from Seven Essential Oils

D. P. Thompson,* Charlene Cannon, Glo'el Porter, and Tesehaye Tsefamichael

Health Research Center and Biology Department, Southern University, Baton Rouge, Louisiana 70813

The presence of a wide array of fluorescent compounds in a number of essential oils analyzed by thin layer chromatography (TLC) has been reported by several investigators (Touchstone and Dobbins 1977; Morozumi 1978; Wagner et al 1983). Several of the fluorescent compounds such as eugenol, cinnamic aldehyde, coumarin, and thymol detected in essential oils have been reported to inhibit mycelium growth in species of mycotoxigenic fungi (Bullerman et al 1977) and pseudomycelium production by common food spoilage and industrially important yeasts (Conner and Beuchat 1984).

In the present study the fluorescent fractions of seven essential oils were separated, isolated, and tested for antifungal activity against the mycelium growth of Aspergillus, Mucor, and Rhizopus species.

MATERIALS AND METHODS

Food-grade quality essential oils, which included bay, cinnamon bark, cinnamon leaf, clove, pimenta berry, pimenta leaf, and thyme, were used in this study (Fritzsche, Dodge and Olcott; New York, New York).

Strains of species of <u>Aspergillus</u>, <u>Mucor</u> and <u>Rhizopus</u> were obtained from the <u>American Type Culture Collection</u> (Rockville, Maryland, U.S.A.) and the Department of National Health and Welfare (Ottawa, Canada). Stock cultures were maintained on slants of potato dextrose agar (PDA). Routine subcultures were made every four weeks.

Standard 20 x 20 cm chromatography plates coated with a layer (0.25 or 0.50 mm) of silica gel G (Supelco; Bellefonte, PA) were activated at 100 C for one hour and then held in a desiccator until needed.

Ten microliters of essential oil were spotted on silica gel G plates and developed in benzene:chloroform *Send reprint requests to D. P. Thompson at the above address.

(50:50, v/v). After development, the plates were airdried and examined in visible light and under ultraviolet (UV) light at 254 and 366 nm before and after exposure to vanillin-sulfuric acid reagent (Wagner et al 1983) or iodine vapor (Touchstone and Dobbins 1978). The zones containing the fluorescent fraction were scraped from the plates and eluted with 1 ml of absolute methanol. Ten microliters of the eluted fluorescent fractions were re-chromatographed on TLC plates for further purification ans subsequent identification. Technical grade (99.5% pure) authentic samples which included thymol, cinnamic acid, cinnamic aldehyde, coumarin, and eugenol were purchased from Pfaltz and Bauer (Stamford, CN). The authentic reference samples were co-chromatographed along side of the fluorescent compounds isolated from the second chromatographic separation.

Fungitoxicity of the four fluorescent fractions from the seven essential oils were evaluated against ten species of Rhizopus, three of Mucor, and eight of Aspergillus. One hundred microliters of methanolic fraction from the first chromatographic separation were added to each filter paper disk (Whatman No. 2, 8 mm dia). The disk was placed in the center of a petri plate containing 10 ml of potato dextrose agar. For the control, filter paper disks supplemented with 100 ul of methanol were used. Test fungus plugs were transferred to the centers of the filter paper disks located on the PDA plates and allowed to grow at 27 C for seven days. A 5-mm diameter fungus-agar-disk from the leading edge of a culture was used for the inoculum. Two plates per treatment per fungus were replicated three times. Experimental data were analyzed statistically using the Duncan's new multiple rank test (P=0.05).

RESULTS AND DISCUSSION

Chromatographic separation of fluorescent substances and data for the seven essential oils are given in Figure 1 and Table 1. Four similar fluorescent fractions were detected in all of the oils except thyme, where two fractions were detected. A fluorescent fraction with an Rf value of 0.15 appeared bluish, while fractions 2 and 3 with Rf values of 0.30 and 0.45 respectively, were blue in the majority of the oils. The largest of the fractions, fraction 4, with an Rf value of 0.63 appeared blue in all the essential oils with the exception of cinnamon bark, where an additional bright blue fluorescent center was also present. Re-chromatographic separation of the fractions revealed that several fluorescent components were present in the majority of the fractions except

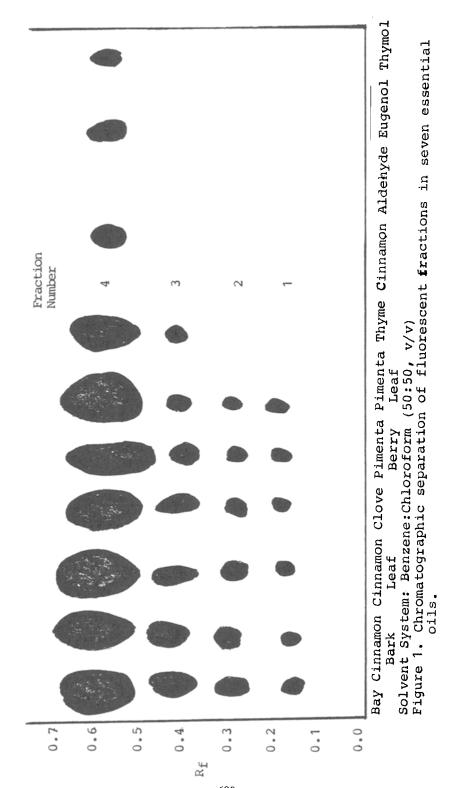


Table 1. Occurrence of fluorescent fractions in seven essential oils.

Number of	Number of R _f values		Fracti	on color	under UV	Fraction color under UV light (366 nm)	(wu	
Fluorescent	iñ Benzene:		Cinnamon	Cinnamon		Pimenta	Pimenta	
Fraction	Chloroform	Вау	Bark	Leaf	Clove	Berry	Leaf	Thyme
-	.15	Bluish	Light	Light	Light	Light	Light	ı
			Bluish	Bluish	Bluish	Bluish	Bluish	
7	.30	Blue	Blue	Blue	Blue	Dark Blue	Blue	1
m	.45	Blue	Blue	Blue	Blue	Dark Blue	Light Bluish	Dark Blue
4	.63	Blue	Dark Blue	Blue	Blue	Bluish	Bluish	Blue
			and Bright Blue Center	្នុង				
	09.							
é Aldehyde								
Eugenol	.63							
Thymol	.62							
Number of Rf values	R£ values	Fraction	color unde	r UV ligh	t (366 n	after	chemical t	treatment
Fluorescent	in Benzene:		Cinnamon Cinnamon Pi	Cinnamon		menta	lω	
Fraction	Cloroform	Вау	Bark	Leaf	Clove	Berry	Leaf	Thyme
	•15	Dark	Dark	Dark	Dark	Dark	Dark	1
		Blue	Blue	Blue	Blue	Blue	Blue	
7	.30	Blue	Blue	Blue	Dark	Blue	Blue	í
m	.45	Blue	Blue	Blue	Blue	Dark Blue	Blue	Dark Blue
4	.63		Bright Blue	Blue	Blue	Blue	Blue	Blue
			Center					
Solvent Sys	Solvent System: Benzene: Chloroform (50:50, v/v)	:Chlorof	orm (50:50,	(A/A)				
: - Toquis	Symbol - : no fluorescent fraction detected.	nt fract	ion detecte	٠ d .				

fraction 1. While the identity of a number of fluorescent compounds in the fractions could not be resolved, several fluorescent compounds known to possess antifungal activity, such as eugenol, cinnamic aldehyde, and thymol, were identified in fraction 4. Eugenol (Rf 0.63) was detected in all of the essential oils except thyme, cinnamic aldehyde (Rf 0.60) in cinnamon bark and leaf, and thymol (Rf 0.62) in thyme only. To confirm the identification of eugenol, thymol, and cinnamic aldehyde in fraction 4, authentic reference samples were co-chromatographed along side of the isolated fluorescent components detected in the chromatographic separation of fraction 4. When tested against three genera of fungi, only fluorescent fraction 4 exhibited fungistatic-fungicidal activity. In general, the growth inhibitory effect of fluorescent fraction 4 varied depending upon the genus. The duration of inhibiton (day) of fungal growth was determined macroscopically and recorded. Fluorescent fraction 4 was most effective, however, in inhibiting mycelial growth in Rhizopus and least effective in the genus Mucor (Tables 2, 3, and 4).

Table 2. Antifungal effect of fluorescent fraction four from seven essential oils on <u>Mucor</u> Species

	Du	rat	ion (of gro	wth :	inhibi	ition	(day)
Fungi		Fl	uore	scent	Fract	tion I	our	
	С	В	СВ	CL	Cl	PB	PL	T
Mucor hiemalis Wehmer	0	0	1	1	1	1	0	0
M. mucedo (Linn.) Fresenius	0	0	0	1	1	1	0	0
ATCC 9836								
M. racemosus f.	0	0	1	1	1	1	1	0
racemosus Schippe	r							
ATCC 7935								

C-Control, B-Bay, CB-Cinnamon Bark, CL-Cinnamon Leaf, C1-Clove, PB-Pimenta Berry, PL-Pimenta Leaf, and T-Thyme

Table 3. Antifungal effect of fluorescent fraction four from seven essential oils on Aspergillus Species

	B 1	СВ 2		actic Cl l	on Fou PB 1	PL 1	<u>T</u>
·	1	2					
			1	1	1	1	1
ı	1						
ı	1						
l	1	_					
		2	2	1	1	1	1
ļ	1	2	1	2	1	1	1
ŧ	1	1	1	1	1	0	1
)	1	2	2	1	1	1	1
)	1	1	1	1	1	1	1
)	1	2	1	1	1	1	1
)	0	1	1	1	0	0	1
		1 1 1	 1 1 2 1 1 2 	1 1 1 1 2 2 1 1 1 1 2 1	1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1	1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1	1 1 1 1 1 0 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1

C-Control, B-Bay, CB-Cinnamon Bark, CL-Cinnamon Leaf, Cl-Clove, PB-Pimenta Berry, PL-Pimenta Leaf, and T-Thyme

Table 4. Antifungal effect of fluorescent fraction four from seven essential oils on Rhizopus Species

	Du	rat	ion o	of gro	wth :	inhib:	ition	(day)
Fungi		Flu	ores	ent E	racti	ion Fo	our	
	С	В	СВ	CL	Cl	PB	$_{ m PL}$	т
Rhizopus arrhizus Fischer ATCC 6204	0	2	3	3	4	3	3	2
R. chinenis Saito	0	1	3	3	3	2	2	1
R. circinans van Teighem ATCC 1225	0	1	3	3	4	2	2	1
R. japonicus Vuillemin ATCC 24863	0	1	3	3	4	2	1	1
R. kazanensis Hanzawa ATCC 8998	0	1	4	3	3	1	1	1
R. oryzae Went:Prinsen- Geerlings ATCC 22957	0	2	3	3	3	2	2	2
R. pygameus Naoumoff ATCC 1159	0	1	4	4	3	2	2	1
R. stolonifer (Ehren:Fr.) Lind ATCC 12939	0	3	2	3	3	3	1	1
R. tritici Saito	0	1	3	2	3	2	2	1
R. 66-81-2	0	1	3	3	3	3	3	2

C-Control, B-Bay, CB-Cinnamon Bark, CL-Cinnamon Leaf, Cl-Clove, PB-Pimenta Berry, PL-Pimenta Leaf, and T-Thyme

The common pattern of fluorescent compounds in the majority of the seven essential oils is of interest since these same seven oils were earlier reported as effective antifungal agents against toxigenic and nontoxigenic fungi (Thompson and Cannon 1986; Thompson 1986). The fungistatic-fungicidal activity of the fluorescent compounds merits continued research in view of the renewed interest of finding naturally occurring fungitoxicants that are biodegradable.

Acknowledgments. This work was supported by Public Health Service grant RRO-08025-11 from the National Institutes of Health.

REFERENCES

- Bullerman LB, Lieu R. Sair SA (1977) Inhibition of growth aflatoxin production by cinnamon and clove oils. Cinnamic aldehyde and eugenol. J. Fd Sci 42: 1107-1109
- Conner DE, Beuchat LR (1984) Effects of essential oils from plants on growth of food spoilage yeast. J. Fd Sci 49:429-434
- Morozumi D (1978) Isolation, purification and antibiotic activity of o-Methyoxycinnamaldehyde from cinnamon. Appl Environ Microbiol 36:577-583
- Thompson DP (1986) Effect of essential oils on spore germination of Rhizopus, Mucor and Aspergillus species. Mycologia 78:482-485
- Thompson DP, Cannon C (1986) Toxicity of essential oils on toxigenic and nontoxigenic fungi. Bull Environ Contam Toxicol 36:525-532
- Touchstone JC, Dobbins MF (1977) Practice of thin layer chromatography. John Wiley and Sons, New York, p.119
- Wagner H, Bladt S, Zgainski EM (1983) Plant drug analysis: A thin layer chromatography photo-atlas. Springer-Verlag, New York, p.59

Received March 20, 1987; accepted June 28, 1987